263 research outputs found

    Estimating Sales for Retail Centers: An Application of the Poisson Gravity Model

    Get PDF
    The projection of total retail sales for a shopping center development is of critical importance in its valuation, in the making of investment decisions by investors, and to the retail merchants who must make location decisions. In this study, we apply the Poisson Gravity Model to forecast the number of shopping trips attracted to each of the major retail centers in the Atlanta metropolitan area. In the second stage, the estimated total retail sales for all the shopping centers covered in the study, are allocated to the individual centers, based on their estimated shopping trip shares.

    Photonic quantum signatures of chaos and boson sampling

    Full text link
    Boson sampling is a paradigmatic example of a task that can be performed by a quantum photonic computer yet is hard for digital classical computers. In a typical boson sampling experiment, the scattering amplitude is determined by the permanent of a submatrix of a unitary drawn from an ensemble of random matrices. Random matrix theory plays a very important role in quite diverse fields while at the same time being intimately related to quantum signatures of chaos. Within this framework, a chaotic quantum system exhibits level statistics characteristic of ensembles of random matrices. Such quantum signatures are encoded in the unitary evolution and so in this work we combine the dynamics of chaotic systems with boson sampling. One of the key results of our work is that we demonstrate the intimate relation between out-of-time-order correlators and boson sampling. We show that the unitary dynamics of a Floquet system may be exploited to perform sampling tasks with identical particles using single-mode phase shifters and multiport beamsplitters. At the end of our paper propose a photonic implementation of the multiparticle kicked rotor, which provides a concrete example of our general approach.Comment: 17 pages, 7 figures. Comments are welcom

    Gate control of Mott metal-insulator transition in a 2D metal-organic framework

    Full text link
    Strong electron-electron Coulomb interactions in materials can lead to a vast range of exotic many-body quantum phenomena, including Mott metal-insulator transitions, magnetic order, quantum spin liquids, and unconventional superconductivity. These many-body phases are strongly dependent on band occupation and can hence be controlled via the chemical potential. Flat electronic bands in two-dimensional (2D) and layered materials such as the kagome lattice, enhance strong electronic correlations. Although theoretically predicted, correlated-electron phases in monolayer 2D metal-organic frameworks (MOFs) - which benefit from efficient synthesis protocols and tunable properties - with a kagome structure have not yet been realised experimentally. Here, we synthesise a 2D kagome MOF comprised of 9,10-dicyanoanthracene molecules and copper atoms on an atomically thin insulator, monolayer hexagonal boron nitride (hBN) on Cu(111). Scanning tunnelling microscopy (STM) and spectroscopy reveal an electronic energy gap of ~200 meV in this MOF, consistent with dynamical mean-field theory predictions of a Mott insulating phase. By tuning the electron population of kagome bands, via either template-induced (via local work function variations of the hBN/Cu(111) substrate) or tip-induced (via the STM probe) gating, we are able to induce Mott metal-insulator transitions in the MOF. These findings pave the way for devices and technologies based on 2D MOFs and on electrostatic control of many-body quantum phases therein.Comment: 19 pages, 4 figure

    Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Biomacromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/pdf/10.1021/bm701055k.A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype

    Rare and Frequent Promoter Methylation, Respectively, of TSHZ2 and 3 Genes That Are Both Downregulated in Expression in Breast and Prostate Cancers

    Get PDF
    Neoplastic cells harbor both hypomethylated and hypermethylated regions of DNA. Whereas hypomethylation is found mainly in repeat sequences, regional hypermethylation has been linked to the transcriptional silencing of certain tumor suppressor genes. We attempted to search for candidate genes involved in breast/prostate carcinogenesis, using the criteria that they should be expressed in primary cultures of normal breast/prostate epithelial cells but are frequently downregulated in breast/prostate cancer cell lines and that their promoters are hypermethylated.We identified several dozens of candidates among 194 homeobox and related genes using Systematic Multiplex RT-PCR and among 23,000 known genes and 23,000 other expressed sequences in the human genome by DNA microarray hybridization. An additional examination, by real-time qRT-PCR of clinical specimens of breast cancer, further narrowed the list of the candidates. Among them, the most frequently downregulated genes in tumors were NP_775756 and ZNF537, from the homeobox gene search and the genome-wide search, respectively. To our surprise, we later discovered that these genes belong to the same gene family, the 3-member Teashirt family, bearing the new names of TSHZ2 and TSHZ3. We subsequently determined the methylation status of their gene promoters. The TSHZ3 gene promoter was found to be methylated in all the breast/prostate cancer cell lines and some of the breast cancer clinical specimens analyzed. The TSHZ2 gene promoter, on the other hand, was unmethylated except for the MDA-MB-231 breast cancer cell line. The TSHZ1 gene was always expressed, and its promoter was unmethylated in all cases.TSHZ2 and TSHZ3 genes turned out to be the most interesting candidates for novel tumor suppressor genes. Expression of both genes is downregulated. However, differential promoter methylation suggests the existence of distinctive mechanisms of transcriptional inactivation for these genes

    HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC

    HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarkerdriven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient–derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.Stephan B. Dreyer ... Karin S. Kassahn ... et al
    corecore